What makes a high-quality tDCS device stand out from the rest? Is it build quality, accurate current delivery, automatic current ramp up/down, a built-in timer, a low battery indicator?

Reliability is one of the fundamental features to consider as you shop for your device. If you are in the market for tDCS equipment, there are a variety of products on the market to suit your needs. Our goal at Caputron is to help you get a good understanding of the recommended features to look for in a tDCS device and help you choose the best stimulator for your intended use.

A lot of people ask the question, "What is the best tDCS device I can buy?" Our goal at Caputron is to help you choose the best device for your intended use. With that in mind, we breakdown the features and advantages of the different tDCS stimulators as well as highlight what are the key features you should look for when choosing your very own device. For a detailed side by side comparison, view our tDCS Device Comparison Table.

1. Activadose tDCS Device with Caputron Starter Kit

Actvidose II tDCS Device Starter Kit
  • Only FDA Cleared device available for tDCS
  • Built to medical device standards
  • Built-in session timer
  • Low battery indicator
  • Calibrated and accurate current delivery
  • Automatic current ramp-up / down
  • Automatic resistance monitoring and current adjustment
  • Recommended by physicians
  • Used in leading universities worldwide
  • Available in both 2 mA and 4 mA options

2. Focus V3 tES Device

Focus V3 tES Device
  • Features many waveforms such as tDCS (Direct Current), tACS (Alternating Current), tPCS (Pulsed Current) and tRNS (Random Noise) stimulation
  • Includes new tRCS (Rippled Current Stimulation)
  • Rechargeable battery
  • Small and portable device
  • Blind/Double Blind Stim Capable
  • Built-in timer
  • Automatic current ramp-up / down
  • Accurate current delivery
  • CE marked in accordance with ISO/IEC 17050-1

3. Brain Premier tDCS Device

BrainPremier tDCS Device
  • Easy to use
  • Low battery indicator
  • Rechargable Battery
  • Automatic current ramp-up / down
  • Built-in timer up to 40 min in 1 min increments
  • Current settings up to 2 mA in 0.1 mA increments

4. BrainDriver V2.1 tDCS Device

BrainDriver tDCS Device
  • Easy to use
  • Low battery indicator
  • Bright backlit LCD display
  • Automatic current ramp-up / down
  • Built-in timer - Choice of 20 or 30 min
  • Current settings of .5 mA, 1 mA, 1.5 mA or 2 mA

5. LIFTiD tDCS Headset

LIFTiD tDCS Device and Neurostimulation Headset
  • Easiest tDCS Device to use
  • Automatic 20 minutes timer
  • Automatic current ramp-up / down
  • Comfortable 1.2 mA current setting
  • Designed for gamers, students, working professionals and musicians

6. Apex Type A tDCS Device

Apex Type A tDCS Device
  • Analog Meter
  • Simple and Easy to Use
  • Manual Current Adjustment
  • Accurate Current Delivery
  • Low battery indicator
  • Available in both 2 mA and 4 mA options

tDCS Device Essentials

Build Quality

When choosing a tDCS device, it is important to review the build quality of the device and if the device has been tested for safety and accuracy. There are many devices on the market, but only a select few have undergone extensive testing and received certification from an independent regulatory body. This list includes devices such as Activadose, Focus, Halo, and PlatoWork. tDCS stimulators that have undergone this testing do come with a higher price tag but also a more professional build.

Accurate Current Delivery

A tDCS device is built with the goal of producing an accurate and stable direct current (DC) waveform. However, not all devices can reliably achieve this goal. Every tDCS user will have a different skin resistance (impedance) and needs to know if their device has enough power (voltage), to ensure a constant current delivery across these varying skin resistances. At Caputron, we recommend a minimum voltage of 20 volts for a device to have enough power to ensure a constant current delivery at 2 mA. This value was calculated using Ohms law, V = I * R (voltage = current * resistance). tDCS modeling software uses a value of 10,000 Ohms for the average value of skin impedance. If we want to be able to reliably achieve 2 mA of stimulation, then our device should be capable of providing 20 volts.

Another important feature about current delivery to consider is the ability of your device to automatically adjust the amount of voltage needed to provide a constant current. During stimulation, as the skin becomes used to the sensation of stimulation, the resistance begins to drop. Your device should be able to automatically "read" that new resistance and adjust its voltage to administer a constant current. This is a feature that would be found in a digital tDCS device such as the Activadose or Focus and not in analog tDCS devices such as Apex or Super Specific. For example, if you are using an Apex tDCS device and find yourself adjusting the current throughout a session, it is because the skin resistance is changing and you need to manually adjust the output.

Automatic Current Ramp Up / Down

Similar to how a device can adjust the output based on your skin resistance, a tDCS device should be able to slowly increase and decrease the current, over ~15-20 seconds, at the beginning and end of stimulation respectively. This is an important feature that should not be overlooked as it allows you to accommodate to the sensation of stimulation and prevents you from becoming light-headed at the onset of a session.

Analog devices will allow you to manually do this by rotating the current / intensity knob. This should be done slowly at the beginning and end of stimulation.

Built-in Timer

A nice feature to have in a tDCS device is an automatic timer. This will allow you to select your desired length of stimulation and not worry about missing your end of session alarm reminder. Most devices have this setting, though not all allow you to choose your own time but rather select from pre-set times of either 20 or 30 minutes.

Low Battery

A simple yet very important feature to look for in your device. A tDCS device works off a battery and it is the premise on which the technology was built. The device needs a clear visual indicator that will inform the user that the device does not have enough power left to complete a full session and the battery should be replaced.

Type of Electrode

The accessories that come with a tDCS device are an often over-looked feature. It is important that the accessories are well built and safe for use. Caputron highly recommends NOT using accessories that utilize an alligator clip for tDCS. A safe tDCS electrode will have a protective shell that completely hides the metal of the lead cable. A device that uses an alligator clip will have exposed metal that will cause burns if contact is made with the skin. Caputron also does not recommend using hydrogel electrodes for tDCS as these electrodes are designed for AC stimulation. When hydrogel electrodes are used with DC stimulation, the hydrogel quickly wears down and leaves the bare electrode in contact with the skin, resulting in burns. A tDCS device should come with sponge electrodes encased in a protective shell to reduce the risk of accidental burns during stimulation.

Caputron Recommended tDCS Device

There are many tDCS devices available on the market, but few of them have undergone as much testing and have as much history as the Activadose.

When compared to other devices on the market, the Activadose is the only device with an FDA clearance. The Activadose is featured in numerous tDCS publications as well as used daily in tDCS clinics and leading universities around the world. This tDCS device is recommended by physicians due to its reliability and medical-grade build quality. The Activadose is IEC 60601 EMC compliant, a main standard of medical electrical devices set by the International Electrotechnical Commission (IEC).

The Activadose tDCS Device Features:
  • FDA Clearance
  • Automatic current calibration
  • Automatic current ramp up and ramp down
  • An easy to read LCD display
  • Built-in session timer
  • Low battery indicator
  • Electrode contact quality indicator
  • Stimulation up to 4 mA
  • Safety testing and calibration